AP-1 family members act with Sox9 to promote chondrocyte hypertrophy.

نویسندگان

  • Xinjun He
  • Shinsuke Ohba
  • Hironori Hojo
  • Andrew P McMahon
چکیده

An analysis of Sox9 binding profiles in developing chondrocytes identified marked enrichment of an AP-1-like motif. Here, we have explored the functional interplay between Sox9 and AP-1 in mammalian chondrocyte development. Among AP-1 family members, Jun and Fosl2 were highly expressed within prehypertrophic and early hypertrophic chondrocytes. Chromatin immunoprecipitation followed by DNA sequencing (ChIP-seq) showed a striking overlap in Jun- and Sox9-bound regions throughout the chondrocyte genome, reflecting direct binding of each factor to the same enhancers and a potential for protein-protein interactions within AP-1- and Sox9-containing complexes. In vitro reporter analysis indicated that direct co-binding of Sox9 and AP-1 at target motifs promoted gene activity. By contrast, where only one factor can engage its DNA target, the presence of the other factor suppresses target activation consistent with protein-protein interactions attenuating transcription. Analysis of prehypertrophic chondrocyte removal of Sox9 confirmed the requirement of Sox9 for hypertrophic chondrocyte development, and in vitro and ex vivo analyses showed that AP-1 promotes chondrocyte hypertrophy. Sox9 and Jun co-bound and co-activated a Col10a1 enhancer in Sox9 and AP-1 motif-dependent manners consistent with their combined action promoting hypertrophic gene expression. Together, the data support a model in which AP-1 family members contribute to Sox9 action in the transition of chondrocytes to the hypertrophic program.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

HES factors regulate specific aspects of chondrogenesis and chondrocyte hypertrophy during cartilage development.

RBPjκ-dependent Notch signaling regulates multiple processes during cartilage development, including chondrogenesis, chondrocyte hypertrophy and cartilage matrix catabolism. Select members of the HES- and HEY-families of transcription factors are recognized Notch signaling targets that mediate specific aspects of Notch function during development. However, whether particular HES and HEY factors...

متن کامل

Sox9 sustains chondrocyte survival and hypertrophy in part through Pik3ca-Akt pathways.

During endochondral bone formation, Sox9 expression starts in mesenchymal progenitors, continues in the round and flat chondrocyte stages at high levels, and ceases just prior to the hypertrophic chondrocyte stage. Sox9 is important in mesenchymal progenitors for their differentiation into chondrocytes, but its functions post-differentiation have not been determined. To investigate Sox9 functio...

متن کامل

Sox9 family members negatively regulate maturation and calcification of chondrocytes through up-regulation of parathyroid hormone-related protein.

Sox9 is a transcription factor that plays an essential role in chondrogenesis and has been proposed to inhibit the late stages of endochondral ossification. However, the molecular mechanisms underlying the regulation of chondrocyte maturation and calcification by Sox9 remain unknown. In this study, we attempted to clarify roles of Sox9 in the late stages of chondrocyte differentiation. We found...

متن کامل

Differential expression of TGF-β superfamily members and role of Smad1/5/9-signalling in chondral versus endochondral chondrocyte differentiation

Proteins of the transforming-growth-factor-β (TGF-β)-superfamily have a remarkable ability to induce cartilage and bone and the crosstalk of TGF-β - and BMP-signalling pathways appears crucial during chondrocyte development. Aim was to assess the regulation of TGF-β-superfamily members and of Smad2/3- and Smad1/5/9-signalling during endochondral in vitro chondrogenesis of mesenchymal stromal ce...

متن کامل

Transcriptional Network Controlling Endochondral Ossification

Endochondral ossification is the fundamental process of skeletal development in vertebrates. Chondrocytes undergo sequential steps of differentiation, including mesenchymal condensation, proliferation, hypertrophy, and mineralization. These steps, which are required for the morphological and functional changes in differentiating chondrocytes, are strictly regulated by a complex transcriptional ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Development

دوره 143 16  شماره 

صفحات  -

تاریخ انتشار 2016